Bayesian semiparametric dynamic frailty models for multiple event time data.

نویسندگان

  • Michael L Pennell
  • David B Dunson
چکیده

Many biomedical studies collect data on times of occurrence for a health event that can occur repeatedly, such as infection, hospitalization, recurrence of disease, or tumor onset. To analyze such data, it is necessary to account for within-subject dependency in the multiple event times. Motivated by data from studies of palpable tumors, this article proposes a dynamic frailty model and Bayesian semiparametric approach to inference. The widely used shared frailty proportional hazards model is generalized to allow subject-specific frailties to change dynamically with age while also accommodating nonproportional hazards. Parametric assumptions on the frailty distribution are avoided by using Dirichlet process priors for a shared frailty and for multiplicative innovations on this frailty. By centering the semiparametric model on a conditionally conjugate dynamic gamma model, we facilitate posterior computation and lack-of-fit assessments of the parametric model. Our proposed method is demonstrated using data from a cancer chemoprevention study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Semiparametric Methods for Longitudinal, Multivariate, and Survival Data

MICHAEL LINDSEY PENNELL: BAYESIAN SEMIPARAMETRIC METHODS FOR LONGITUDINAL, MULTIVARIATE, AND SURVIVAL DATA. (Under the direction of Dr. David Dunson.) In many biomedical studies, the observed data may violate the assumptions of standard parametric methods. In these situations, Bayesian methods are appealing since nonparametric priors, such as the Dirichlet process (DP), can incorporate a priori...

متن کامل

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

Bayesian semiparametric multi-state models

Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example are Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bay...

متن کامل

Cox and Frailty Models for Analysis of Esophageal Cancer Data‎

‎By existing censor and skewness in survival data‎, ‎some models such as weibull are used to analyzing survival data‎. ‎In addition, parametric and semiparametric models can be obtained from baseline hazard function of Cox model to fit to survival data‎. ‎However these models are popular because of their simple usage but do not consider unknown risk factors‎, ‎that's why cannot introduce the be...

متن کامل

Bayesian semiparametric frailty selection in multivariate event time data.

Biomedical studies often collect multivariate event time data from multiple clusters (either subjects or groups) within each of which event times for individuals are correlated and the correlation may vary in different classes. In such survival analyses, heterogeneity among clusters for shared and specific classes can be accommodated by incorporating parametric frailty terms into the model. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 62 4  شماره 

صفحات  -

تاریخ انتشار 2006